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Abstract

Image and geometry registration algorithms are an essential component of many
computer graphics and computer vision systems. With recent technological ad-
vances in RGB-D sensors, such as the Microsoft Kinect or Asus Xtion Live, robust
algorithms that combine 2D image and 3D geometry registration have become an
active area of research. The goal of this course is to introduce the basics of 2D/3D
registration algorithms and to provide theoretical explanations and practical tools
to design computer vision and computer graphics systems based on RGB-D devices.
To illustrate the theory and demonstrate practical relevance, we briefly discuss three
applications: rigid scanning, non-rigid modeling, and realtime face tracking. Our
course targets researchers and computer graphics practitioners with a background
in computer graphics and/or computer vision.

1



About the Lecturers

Sofien Bouaziz is a PhD student in the Computer Graphics and Geometry Labora-
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Course Overview

5 minutes: Introduction

• Overview of the course and motivation

50 minutes: 2D/3D Registration

• 20 minutes: 3D Registration

• 20 minutes: 2D Registration

• 10 minutes: Putting It All Together

30 minutes: Applications

• 10 minutes: Rigid Scanning

• 10 minutes: Non-rigid Modeling

• 10 minutes: Realtime Face Tracking

5 minutes: Conclusion

• Outlook and Q&A
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1 Introduction

Recent technological advances in RGB-D sensing devices, such as the Microsoft Kinect,
facilitate numerous new and exciting applications, for example in 3D scanning [19] and hu-
man motion tracking [20, 15, 5]. While affordable and accessible, consumer-level RGB-D
devices typically exhibit high noise levels in the acquired data. Moreover, difficult light-
ing situations and geometric occlusions commonly occur in many application settings,
potentially leading to a severe degradation in data quality. This necessitates a partic-
ular emphasis on the robustness of image and geometry processing algorithms. The
combination of 2D and 3D registration is one important aspect in the design of robust
applications based on RGB-D devices. This lecture introduces the main concepts of 2D
and 3D registration and explains how to combine them efficiently. An up-to-date version
of these course notes as well as implementation details and source code can be found at
http://lgg.epfl.ch/2d3dRegistration.

2 2D/3D Registration

In the first part of the course we introduce the theory of 2D/3D registration algorithms
suitable for processing RGB-D data. We focus on pairwise registration to compute the
alignment of a source model onto a target model. This alignment can be rigid or non-
rigid, depending on the type of object being scanned. We formulate the registration as
the minimization of an energy

Ereg = Ematch + Eprior. (1)

The matching energy Ematch defines a measure of how close the source is from the target.
The prior energy Eprior quantifies the deviation from the type of transformation or defor-
mation that the source is allowed to undergo during the registration, for example, a rigid
motion or an elastic deformation. The goal of registration is to find a transformation of
the source model that minimizes Ereg to bring the source into alignment with the target.
For data acquired with RGB-D devices, registration can utilize both the geometric infor-
mation encoded in the 3D depth map, as well as the color information provided by the
recorded 2D images. We show that Equation 1 provides a unified way to formulate both
2D and 3D registration, which simplifies their integration.

2.1 3D Registration

In 3D registration we want to align a source surface X embedded in R3 to a target surface
Y in R3. To formalize this problem, we introduce a surface Z that is a transformed or
deformed version of X that eventually aligns with Y . To solve the registration problem
numerically, we represent the continuous surface X by a set of points X = {xi ∈ X , i =
1 . . . n} and define their corresponding points on the deformed surface Z as Z = {zi ∈
Z, i = 1 . . . n}. Different sampling strategies have been presented by Rusinkiewicz and
Levoy [16].
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2.1.1 Matching Energy

The matching energy measures how close the surface Z is to the surface Y and is defined
as

Ematch(Z) =

∫
Z
ϕ(z,Y)dz, (2)

where z ∈ R3 is a point on Z. The accuracy of the registration is evaluated by the metric
ϕ that measures the distance to Y . For simplicity, we use the squared Euclidian distance
as metric for all the energies presented in this course. However, robust metrics [13] could
be use instead to increase the robustness of the registration to noise and outliers. Using
the set of points Z, we can discretize the matching energy as

Ematch(Z) =
n∑

i=1

‖zi − PY(zi)‖22. (3)

where PY(zi) is the closest point (using Euclidian distance) on the surface Y from zi.
PY(zi) can also be seen as the orthogonal projection of zi onto Y .

2.1.2 Prior Energy

In this section we present several prior energies that can be used for registration. These
energies can also be combined to build more sophisticated priors. Priors encode proper-
ties of the scanned objects. For example, when scanning rigid objects, a global rigidity
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prior can be used to limit the allowed transformations to rotations and translations. For
deforming objects, for example a human body, geometric priors are often employed that
try to mimic physical behavior such as an elastic deformation. We describe a simple
local rigidity prior that approximates elastic deformations and facilitates efficient imple-
mentations. More complex deformation behavior can be captured using a data-driven
approach. One popular method is based on a collection of sample shapes that repre-
sent that allowable space of deformations. Using dimensionality reduction, for example
principal component analysis, efficient linear models can be derived that are suitable for
realtime registration algorithms.

Global Rigidity. The global rigidity of the 3D registration can be measured as

Eprior(Z,R, t) =
n∑

i=1

‖zi − (Rxi + t)‖22, (4)

where R ∈ R3×3 is a rotation matrix and t ∈ R3 a translation vector. In this case, the
surface Z tries to follow a rigid transformation of the surface X .

Local Rigidity. The local rigidity energy, following [17, 4], can be expressed as

Eprior(Z,Ri|ni=1) =
n∑

i=1

∑
j∈Ni

‖(zj − zi)−Ri(xj − xi)‖22, (5)

where the Ri ∈ R3×3 are rotation matrices and Ni is the set of indices of the neighboring
points of xi. In this case, each local neighborhood on the surface Z tries to follow a rigid
transformation of its corresponding local neighborhood on the surface X . Other local
rigidity energies can also be used as prior, see for example [3, 18].
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Linear Model. A 3D linear shape model can be defined using a matrix P containing
the shape model basis, and a mean shape vector m [7]. A new shape s can be defined as

s = Pd + m, (6)

where d is a vector containing the basis coefficients. A linear model prior energy can be
formulated as the deviation of the vertices from the linear model

Eprior(Z,d) =
n∑

i=1

‖zi − (Pid + mi)‖22, (7)

where Pi and mi are the part of P and m corresponding to the vertex zi.

2.1.3 Optimization

How to best optimize the registration energy depends on the prior energy. In this section
we show, as an example, how to optimize a registration energy for two applications: rigid
scanning and non-rigid modeling.

Rigid Scanning Since single depth maps acquired with the RGB-D sensor exhibit
high noise levels and do not cover the whole surface of the 3D object, an aggregation
procedure is typically applied to obtain a complete model with reduced noise level. In
order to aggregate multiple scans over time, different methods can be used [22, 23, 14].
The classical approach is to perform a 3D rigid registration of the currently acquired scan
of the object with the already accumulated 3D data. The pairwise 3D alignment can be
formulated as

Ereg(Z,R, t) = w1

n∑
i=1

‖zi − PY(zi)‖22 + w2

n∑
i=1

‖zi − (Rxi + t)‖22, (8)

where the matching energy is combined with a global rigidity prior. To optimize Ereg(Z,R, t)
we linearize the rotation matrix approximating cos θ by 1 and sin θ by θ

R ≈ R̃ =

 1 −γ β
γ 1 −α
−β α 1

 . (9)

The alignment is computed by solving iteratively

arg min
Zt+1,R,t

w1

n∑
i=1

‖zt+1
i − PY(zt

i)‖22 + w2

n∑
i=1

||zt+1
i − (R̃xi + t)||22, (10)

where t is the iteration number and z0
i = xi. As PY(.) is a non linear function that is

difficult to optimize with, we use in the optimization the previous estimate PY(zt
i). This

correspond to the point-to-point matching error [1]. To speed up the convergence of the
optimization one can linearize ‖zt+1

i − PY(zt
i)‖2 at PY(zt

i) which gives nT
i (zt+1

i − PY(zt
i)),
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where ni is the normal of the surface Y at PY(zt
i). This leads to the point-to-plane

matching error [6]. The optimization can be reformulated as

arg min
Zt+1,R,t

w1

n∑
i=1

(nT
i (zt+1

i − PY(zt
i)))

2 + w2

n∑
i=1

||zt+1
i − (R̃xi + t)||22. (11)

Both Equation 10 and Equation 11 are quadratic, and therefore, can be optimized by
setting the partial derivatives to zero by solving a linear system. It is interesting to note
that if w2 = +∞ then zi can be replaced into the matching energy by Rxi + t leading to
a registration energy

Ereg(R, t) =
n∑

i=1

‖Rxi + t− PY(Rxi + t)‖22. (12)

This energy can be minimized in a similar spirit by linearizing the rotation matrix and
iteratively solving a linear system. Other approaches can be found in [8].

Non-rigid Modeling Registering a shape template towards a scanned 3D object allows
to obtain a complete and clean 3D mesh [11]. An example is given below in the context of
face modeling. In this case, the morphable model of Blanz and Vetter [2] that represents
the variations of different human faces in neutral expression was registered to a scan of a
face. Non-rigid modeling using a morphable model can be formulated as

Shape Model
Fitting

Accumulated Scans 3D Mesh

Ereg(Z,d,Ri|ni=1,R, t) = w1

n∑
i=1

‖zi − PY(zi)‖22 + w2

n∑
i=1

‖zi − (Rxi + t)‖22+

w3

n∑
i=1

‖zi − (Pid + mi)‖22 + w4

n∑
i=1

∑
j∈Ni

‖(zj − zi)−Ri(xj − xi)‖22. (13)

A local rigidity energy is added to the optimization in order to get an accurate result, as
the morphable model represents the large-scale variability but might not capture small
scale details. As previously, we solve iteratively

arg min
Zt+1,d,Ri|ni=1,R,t

w1

n∑
i=1

(nT
i (zt+1

i − PY(zt
i)))

2 + w2

n∑
i=1

||zt+1
i − (R̃xi + t)||22+

w3

n∑
i=1

‖zt+1
i − (Pid + mi)‖22 + w4

n∑
i=1

∑
j∈Ni

‖(zt+1
j − zt+1

i )− R̃i(xj − xi)‖22, (14)

which corresponds to solving a linear system.
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2.2 2D Registration

In 2D registration we want to register a source image I to a target image J. During the
registration process, the 2D pixel grid of the source image X = {xi ∈ R2, i = 1 . . . n} is
deformed to Z = {zi ∈ R2, i = 1 . . . n} to match the target image.

2.2.1 Matching Energy

We define I(x) as the pixel value of the image I located at the position x. The matching
energy measures the color similarity between the source image and the target image
wrapped onto the deformed grid Z.

Ematch(Z) =
n∑

i=1

‖I(xi)− J(zi)‖22. (15)

2.2.2 Prior Energy

Similar to the 3D geometry registration, we can use different prior energies that can be
combined to build more complex priors.

First Order Smoothness. In the Lucas-Kanade algorithm [12] the deformation is
assumed to be constant within a patch around each pixel. This corresponds to the prior
energy

Eprior(Z) =
n∑

i=1

∑
j∈Ni

‖(zj − xj)− (zi − xi)‖22, (16)

where Ni is the set of indices of the neighbors of xi.

Laplacian Smoothness. In the Horn-Schunck algorithm [10] the smoothness of the
flow is defined using a Laplacian operator

Eprior(Z) =
n∑

i=1

‖(zi − xi)−
1

|Ni|
∑
j∈Ni

(zj − xj)‖22, (17)

where |Ni| is the cardinality ofNi. This energy measures for each grid vertex the deviation
of its deformation from the mean deformation of its neighbors.
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2.2.3 Optimization

In this section we show, as an example, how to optimize the matching energy combined
with the laplacian smoothness energy. This is similar to the method presented in [10].
The optimization is defined as

Z∗ = arg min
Z

Ereg(Z) (18)

with

Ereg(Z) = w1

n∑
i=1

‖I(xi)− J(zi)‖22 + w2

n∑
i=1

‖(zi − xi)−
1

|Ni|
∑
j∈Ni

(zj − xj)‖22. (19)

To solve this optimization we linearize J(.) at the current estimate and solve iteratively

arg min
Zt+1

w1

n∑
i=1

‖I(xi)− J(zt
i)−∇J(zt

i)
T (zt+1

i − zt
i)‖22+

w2

n∑
i=1

‖(zt+1
i − xi)−

1

|Ni|
∑
j∈Ni

(zt+1
i − xi)‖22. (20)

where ∇J =
[
∇Jx ∇Jy

]T
is the image gradient, with ∇Jx the image gradient in x

direction and ∇Jy the image gradient in y direction. As previously, the minimization
can be computed by setting the partial derivative to zero, which corresponds to solving
a linear system.

2.3 Putting It All Together

We show how to combine 2D image registration and 3D geometry registration to best
utilize the data provided by the RGB-D sensor. More specifically, we want to register a
surface X ⊂ R3 with color information I, i.e. a texture mapped surface, to a 3D surface Y
with corresponding color image J. As previously, the source X is deformed to a surface Z.
We sample the continuous surface X to obtain a set of points X = {xi ∈ X , i = 1 . . . n}.
We define their corresponding points on the deformed surface Z as Z = {zi ∈ Z, i =
1 . . . n}. The color information of sample point xi is given by I(xi).

2.3.1 Matching Energy

We formulate the energy measuring the quality of the 2D and 3D alignment as follow

Ematch(Z) = w1

n∑
i=1

‖zi − PY(zi)‖22 + w2

n∑
i=1

‖I(xi)− J(f(zi))‖22. (21)

The first term is the matching energy presented in Section 2.1. The second term is similar
to the 2D matching energy presented in Section 2.2. The only difference is the additional
function f : R3 → R2 that projects a 3D point zi to the 2D image J. For example this

function could be a perspective projection of the form f(zi) =
[
fzi,x
zi,z

fzi,y
zi,z

]T
.
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2.3.2 Optimization

We illustrate 2D/3D registration in the context of a face tracking system that combines
the 2D/3D matching energy with a 3D blendshape prior. A blendshape representation
is a linear model defined as a set of blendshape meshes B = [b0, ...,bn] where b0 is the
rest pose and bi, i > 0 are different expressions. A new expression can be generated as
T = b0 + Bd, where B = [b1 − b0, ...,bn − b0]. The blendshape model shown below is
inspired from Ekmans Facial Action Coding System [9]. Realtime face tracking using an

Neutral

RGB-D device can be formulated as a 2D/3D registration of the blendshape model to
the 2D and 3D data [21]. The registration energy can be formulated as
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Ereg(Z,d,R, t) = w1

n∑
i=1

‖zi − PY(zi)‖22 + w2

n∑
i=1

‖I(xi)− J(f(zi))‖22+

w3

n∑
i=1

||zi − (Bid + b0
i )||22 + w4

n∑
i=1

‖zi − (Rxi + t)‖22, (22)

To solve this optimization we linearize J(f(.)) at the current estimate and solve iteratively

arg min
Zt+1,d

w1

n∑
i=1

(nT
i (zt+1

i − PY(zt
i)))

2+

w2

n∑
i=1

‖I(xi)− J(f(zt
i)) +∇J(f(zt

i))
T ∂f(zt

i)

∂z
(zt+1 − zt))‖22+

w3

n∑
i=1

||zt+1
i − (Bid + b0

i )||22 + +w4

n∑
i=1

‖zt+1
i − (R̃xi + t)‖22. (23)

For a perspective projection f(zi) =
[
fzi,x
zi,z

fzi,y
zi,z

]T
we have

∂f(zi)

∂z
=

[
f

zi,z
0 −fzi,x

z2i,z

0 f
zi,z

−fzi,y
z2i,z

]
. (24)

As previously, the minimization can be computed by solving a linear system. For tracking,
another 2D matching energy can also be added

Ematch(Zt+1) =
n∑

i=1

‖Jt(f(zt
i))− Jt+1(f(zt+1

i ))‖22. (25)

This energy enforces color consistency over time by measuring the variation of color from
the previous image frame Jt to the current frame Jt+1 for each zi. In [21], the global
rigidity is decoupled. In a first step, a 3D rigid alignment is performed, and in second
step, a 2D/3D alignment of the blendshape model is computed.

3 Conclusion

We have shown that 2D and 3D registration can be expressed and combined in a com-
mon framework. Numerous application based on RGB-D devices can benefit from this
formulation that allows to combine different priors in an easy manner.
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